Reaction of $B\left(C_{6} F_{5}\right)_{3}$ with zirconium and hafnium benzyl diene complexes. The crystal and molecular structures of $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\boldsymbol{\eta}^{4}-\mathrm{CH}_{2} \mathrm{CMeCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}$ and $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}(2,3-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]\left[\mathrm{Cp}^{\prime \prime}=\mathbf{1 , 3}-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]$

Gerardo Jiménez Pindado, ${ }^{a}$ Mark Thornton-Pett, ${ }^{a}$ Michael B. Hursthouse, ${ }^{b}$ Simon J. Coles ${ }^{b}$
and M. Bochmann *a

${ }^{a}$ School of Chemistry, University of Leeds, Leeds, UK LS2 9JT
${ }^{b}$ School of Chemistry and Applied Chemistry, University of Wales, Cardiff, UK CF1 3TB

Received 18th February 1999, Accepted 26th March 1999

The zirconium and hafnium diene complexes $\mathrm{Cp}{ }^{\prime \prime} \mathrm{MCl}\left(\eta^{4}-\mathrm{CH}_{2} \mathrm{CMeCR}^{1} \mathrm{CH}_{2}\right)$ react with benzylmagnesium chloride to give the benzyl complexes $\mathrm{Cp}{ }^{\prime \prime} \mathrm{M}\left(\eta^{4}-\mathrm{CH}_{2} \mathrm{CMeCR}^{1} \mathrm{CH}_{2}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\left(\mathrm{M}=\mathrm{Zr}, \mathrm{R}^{1}=\mathrm{Me}\right.$ or $\left.\mathrm{H} ; \mathrm{M}=\mathrm{Hf}, \mathrm{R}^{1}=\mathrm{Me}\right)$ which react with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ selectively under benzyl abstraction to give the zwitterionic products $\mathrm{Cp}{ }^{\prime \prime} \mathrm{M}\left(\eta^{4}\right.$-diene)-$\left\{\eta^{n}-\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}$. The zirconium derivative exists as a mixture of two isomers which interchange via ring-flipping of the diene ligand, whereas the Hf compound is rigid. The isoprene analogue $\mathrm{Cp}{ }^{\prime \prime} \mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{CMeCHCH}_{2}\right)\left\{\mathrm{PhCH}_{2}{ }^{-}\right.$ $\left.\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}$ decomposes at room temperature under $\mathrm{C}-\mathrm{H}$ activation and $\mathrm{C}_{6} \mathrm{~F}_{5}$ migration from boron to zirconium to give toluene and the structurally characterised boryldiene complex $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CMeCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}$. In the hafnium (but not zirconium) complexes, the $\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion is displaced by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The addition of diethyl ether leads to the ionic compound $\left[\mathrm{Cp} " \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]^{+}\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ which was characterised by X-ray diffraction.

Introduction

As part of a systematic study of mono-cyclopentadienyl complexes of the general formula $\mathrm{Cp}^{\prime \prime} \mathrm{M}($ dianion $)(\mathrm{R})$ as potential precursors for new olefin polymerisation or oligomerisation catalysts we have recently reported the synthesis of the compounds $\mathrm{Cp}^{\prime \prime} \mathrm{M}\left(\eta^{4}\right.$-diene $)(\mathrm{R})\left(\mathrm{R}=\mathrm{Me}, \eta^{3} \text {-allyl }\right)^{1}$ and $\mathrm{Cp} \mathrm{p}^{\prime \prime} \mathrm{M}\left(\eta^{4}-\right.$ diazadiene $)(\mathrm{R})\left(\mathrm{R}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Ph}\right),{ }^{2}$ where $\mathrm{M}=\mathrm{Zr}$ or Hf and $\mathrm{Cp}^{\prime \prime}=1,3-\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}$. These 14 - and 16 -electron compounds are not themselves catalytically active but are activated by suitable Lewis or Brønsted acids, ${ }^{3}$ for example, the allyl complexes $\mathrm{Cp}{ }^{\prime \prime} \mathrm{M}$ (diene) $\left(\eta^{3}\right.$-allyl) $\mathbf{1}$ are attacked by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ exclusively at the less substituted terminal carbon atom of the diene ligand to give zwitterionic complexes $\mathbf{2}$ which readily polymerise ethene to high molecular weight polymers [eqn. (1)]. ${ }^{4}$ In no case was

there evidence for an attack of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ on the allyl ligand. We now report the reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with related benzyl complexes $\mathrm{Cp}{ }^{\prime \prime} \mathrm{M}($ diene $)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ which show a very different selectivity.

Results and discussion

The chloro complexes $\mathrm{Cp}^{\prime \prime} \mathrm{MCl}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-2,3\right)(\mathbf{3 a}, \mathrm{M}=\mathrm{Zr}$; $\mathbf{3 b}, \mathrm{M}=\mathrm{Hf})$ and $\mathrm{Cp}^{\prime \prime} \mathrm{ZrCl}\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Me}-2\right) 4 \mathbf{4},{ }^{1}$ react with benzylmagnesium chloride in diethyl ether at $-78^{\circ} \mathrm{C}$ to room temperature to give the corresponding benzyl complexes $\mathbf{5 a}, \mathbf{5 b}$ and 6a as dark red solids in the case of zirconium and as spectroscopically pure orange oils for hafnium (Scheme 1).
These benzyl complexes are thermally significantly more stable than the analogous methyl derivatives and can be isolated

a $M=Z r ; b, M=H f$ $3 R^{1}=R^{2}=\mathrm{Me}$ $4 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$

5b

Scheme 1 i, $\mathrm{PhCH}_{2} \mathrm{MgCl}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$.
and stored at ambient conditions without appreciable decomposition. Compound $\mathbf{5 a}$ is stable in benzene solution up to $60^{\circ} \mathrm{C}$ but at higher temperature starts to decompose to give a mixture of products, including the previously identified dinuclear compound $\left[\mathrm{Cp}{ }^{\prime \prime} \mathrm{Zr}\left(\mu, \eta^{1}: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Me}_{2}\right)\right]_{2}{ }^{5}$ The hafnium compound $\mathbf{5 b}$ is more stable and decomposes in solution only above $80^{\circ} \mathrm{C}$ to a mixture of unknown products; there was no evidence for the formation of an analogue to the dinuclear zirconium complex. All benzyl complexes are very soluble in hydrocarbon solvents and decompose rapidly in chlorinated solvents to the corresponding trichlorides, $\mathrm{Cp}^{\prime \prime} \mathrm{MCl}_{3}$. The compounds are extremely air sensitive and for this reason the oily products did not give satisfactory elemental analyses.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data of all new compounds are given in Table $1,{ }^{19} \mathrm{~F}$ NMR data are collected in Table 2. The spectroscopic data, in particular the geminal ${ }^{2} J_{\mathrm{HH}}$ coupling constants $(7.0-11.4 \mathrm{~Hz})$ and the ${ }^{1} J_{\mathrm{CH}}$ coupling constants (139.8-146.9 Hz) of the diene methylene groups are con-

Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of zirconium and hafnium complexes ${ }^{a}$

Complex	${ }^{1} \mathrm{H}$ NMR (δ)	Assignment	${ }^{13} \mathrm{C}$ NMR (δ)	Assignment
$\begin{aligned} & \mathrm{Cp}^{\prime} \mathrm{Zr}_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)- \\ & \left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \\ & \mathbf{5 a}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 20{ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.19(\mathrm{~d}, J=9,2 \mathrm{H}) \\ & 0.23(\mathrm{~s}, 18 \mathrm{H}) \\ & 2.05(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.24(\mathrm{~s}, 2 \mathrm{H}) \\ & 2.37(\mathrm{~d}, J=9,2 \mathrm{H}) \\ & 5.57(\mathrm{~d}, J=2,2 \mathrm{H}) \\ & 5.72(\mathrm{t}, J=2,1 \mathrm{H}) \\ & 6.08(\mathrm{~d}, J=7.2,2 \mathrm{H}) \\ & 6.7(\mathrm{t}, J=7.2,1 \mathrm{H}) \\ & 7.05(\mathrm{t}, J=7.2,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe} \\ & \text { diene-Me } \\ & \mathrm{CH}_{2} \mathrm{Ph} \\ & =\mathrm{CH}_{2} s y n \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & p-\mathrm{Ph} \\ & m-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & 0.33(\mathrm{q}, J=119) \\ & 23.98(\mathrm{q}, J=125.9) \\ & 57.77(\mathrm{t}, J=138.3) \\ & 60.4(\mathrm{t}, J=142.3) \\ & 117.51(\mathrm{~d}, J=160) \\ & 119.31,123.64(\mathrm{~m}) \\ & 121.14(\mathrm{~d}, J=166.8) \\ & 121.4(\mathrm{~d}, J=160) \\ & 122.14(\mathrm{~d}, J=168.3) \\ & 133.96(\mathrm{~d}, J=157.7) \\ & 138.53(\mathrm{~m}) \end{aligned}$	SiMe_{3} diene-Me $\mathrm{CH}_{2} \mathrm{Ph}$ $=\mathrm{CH}_{2}$ $o-\mathrm{Ph}$ $=C \mathrm{Me}, 1,3-\mathrm{C}_{5} \mathrm{H}_{3}$ $2-\mathrm{C}_{5} \mathrm{H}_{3}$ p-Ph $4,5-\mathrm{C}_{5} \mathrm{H}_{3}$ $m-\mathrm{Ph}$ ipso-Ph
$\mathrm{Cp}^{\prime} \mathrm{Hf}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)-$ $\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)$ 5b $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right)$	$\begin{aligned} & -0.18(\mathrm{~d}, J=11.1,2 \mathrm{H}) \\ & 0.21(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.23(\mathrm{~s}, 2 \mathrm{H}) \\ & 2.12(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.31(\mathrm{~d}, J=11.1,2 \mathrm{H}) \\ & 5.86(\mathrm{t}, J=1.9,1 \mathrm{H}) \\ & 5.99(\mathrm{~d}, J=1.9,2 \mathrm{H}) \\ & 65.53(\mathrm{~d}, J=7.2,2 \mathrm{H}) \\ & 6.86(\mathrm{t}, J=7.2,1 \mathrm{H}) \\ & 7.19(\mathrm{t}, J=7.2,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe}_{3} \\ & \mathrm{CH}_{2} \mathrm{Ph} \\ & \text { diene-Me } \\ & =\mathrm{CH}_{2} s y n \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & p-\mathrm{Ph} \\ & m-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & 0.18(\mathrm{q}, J=119.1) \\ & 23.5(\mathrm{q}, J=126) \\ & 66.45(\mathrm{t}, J=139.3) \\ & 71.22(\mathrm{t}, J=122.1) \\ & 121.42,125.37(\mathrm{~m}) \\ & 121.87(\mathrm{~d}, J=169) \\ & 121.9(\mathrm{~d}) \\ & 122.02(\mathrm{~d}, J=167.5) \\ & 122.77(\mathrm{~d}, J=153.2) \\ & 130.28(\mathrm{~d}, J=153.2) \\ & 154.2(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{SiMe}_{3} \\ & \text { diene-Me } \\ & =\mathrm{CH}_{2} \\ & \mathrm{CH}_{2} \mathrm{Ph} \\ & =\mathrm{CMe}, 1,3-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & p-\mathrm{Ph} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & m-\mathrm{Ph} \\ & \text { ipso- } \mathrm{Ph} \end{aligned}$
$\begin{aligned} & \mathrm{Cp}^{\prime} \mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)- \\ & \left(2-\mathrm{MeC}_{4} \mathrm{H}_{5}\right) \\ & \mathbf{6 a}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -0.56,0.35(\mathrm{~d}, \mathrm{~m}, J=9,1 \mathrm{H}, \text { each }) \\ & 0.23,0.3(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 1.1,2.18(\mathrm{~d}, J=8,1 \mathrm{H} \text { each }) \\ & 1.82(\mathrm{~s}, 3 \mathrm{H}) \\ & 1.93,2.24(\mathrm{t}, \mathrm{~d}, J=9,1 \mathrm{H} \text { each }) \\ & 4.33(\mathrm{t}, J=9,1 \mathrm{H}) \\ & 6.02,6.35(\mathrm{~m}, 1 \mathrm{H} \text { each }) \\ & 6.05(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.19(\mathrm{~d}, J=7.3,2 \mathrm{H}) \\ & 6.88(\mathrm{t}, J=7.2,1 \mathrm{H}) \\ & 7.05(\mathrm{t}, J=7.2,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe}_{3} \\ & \mathrm{CH}_{2} \mathrm{Ph} \\ & \text { diene-Me } \\ & =\mathrm{CH}_{2} s y n \\ & \mathrm{CH} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & p-\mathrm{Ph} \\ & o-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & 0.3,0.43(\mathrm{q}, J=119) \\ & 26.1(\mathrm{q}, J=125.6) \\ & 52.04,60.6(\mathrm{t}, J=144.6,145) \\ & 53.85(\mathrm{t}, J=137.8) \\ & 117.73(\mathrm{~d}, J=154) \\ & !19.68,121.69(\mathrm{~d}, J=168.3,167.5) \\ & 120.4(\mathrm{~d}, J=155) \\ & 120.63,128.87(\mathrm{~m}) \\ & 121.83(\mathrm{~d}, J=166.8) \\ & 122.63(\mathrm{~d}, J=162.2) \\ & 131.51(\mathrm{~d}, J=158.5) \\ & 134.61(\mathrm{~m}) \end{aligned}$	```\(\mathrm{SiMe}_{3}\) diene-Me \(=\mathrm{CH}_{2}\) \(\mathrm{CH}_{2} \mathrm{Ph}\) \(o-\mathrm{Ph}\) \(4,5-\mathrm{C}_{5} \mathrm{H}_{3}\) CH \(=\mathrm{CMe}, 1,3-\mathrm{C}_{5} \mathrm{H}_{3}\) \(2-\mathrm{C}_{5} \mathrm{H}_{3}\) p-Ph \(m-\mathrm{Ph}\) ipso-Ph```
$\begin{aligned} & \mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)- \\ & \left\{\mathrm{n}^{6}-\mathrm{PhCH} \mathrm{H}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \\ & 7 \mathrm{a}, \text { major isomer, } \\ & \left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -1.53(\mathrm{~d}, J=10.5,2 \mathrm{H}) \\ & 0.09(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.31(\mathrm{~s}, 6 \mathrm{H}) \\ & 3.0(\mathrm{~d}, J=10.5,2 \mathrm{H}) \\ & 3.34(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \\ & 4.4(\mathrm{brs}, 1 \mathrm{H}) \\ & 4.6(\mathrm{t}, J=7,1 \mathrm{H}) \\ & 5.4(\mathrm{t}, J=7,2 \mathrm{H}) \\ & 5.63(\mathrm{~d}, J=1.8,2 \mathrm{H}) \\ & 6.15(\mathrm{~d}, J=7,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe} \\ & \text { diene-Me } \\ & =\mathrm{CH}_{2} s y n \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & p-\mathrm{Ph} \\ & m \text { - } \mathrm{Ph} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & -0.32(\mathrm{q}, J=119.5) \\ & 23.11(\mathrm{q}, J=127.5) \\ & 34.4(\mathrm{vbr}) \\ & 66.19(\mathrm{t}, J=144) \\ & 116.4 \\ & 116.67 \\ & 118.07(\mathrm{~d}, J=169.8) \\ & 121.9(\mathrm{~d}, J=171) \\ & 123.93 \\ & 136.28\left(\mathrm{~d}, J_{\mathrm{CF}}=249.8\right) \\ & 137.82\left(\mathrm{~d}, J_{\mathrm{CF}}=246.8\right) \\ & 147.5\left(\mathrm{~d}, J_{\mathrm{CF}}=237\right) \\ & 155.92(\mathrm{~m}) \end{aligned}$	SiMe_{3} diene-Me CH_{2} - B $=\mathrm{CH}_{2}$ $2-\mathrm{C}_{5} \mathrm{H}_{3}$ $4,5-\mathrm{C}_{5} \mathrm{H}_{3}$ $m-\mathrm{Ph}$ $o-\mathrm{Ph}$ p - Ph $m-\mathrm{C}_{6} \mathrm{~F}_{5}$ $p-\mathrm{C}_{6} \mathrm{~F}_{5}$ $o-\mathrm{C}_{6} \mathrm{~F}_{5}$ ipso-Ph
Minor isomer, $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right)$	$\begin{aligned} & -1.8(\mathrm{~d}, J=9.3,2 \mathrm{H}) \\ & -0.01(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.47(\mathrm{~s}, 6 \mathrm{H}) \\ & \text { underneath } \\ & 3.55(\mathrm{~d}, J=9.3,2 \mathrm{H}) \\ & 4.5(\mathrm{~d}, J=1.7,2 \mathrm{H}) \\ & 5.27(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}) \\ & 5.72(\mathrm{t}, J=7,1 \mathrm{H}) \\ & 6.07(\mathrm{t}, J=7,2 \mathrm{H}) \\ & 6.25(\mathrm{~d}, J=7,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe}_{3} \\ & \text { diene-Me } \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & =\mathrm{CH}_{2} \text { syn } \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & p-\mathrm{Ph} \\ & m-\mathrm{Ph} \\ & o-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & 0.30(\mathrm{q}, J=119.5) \\ & 24.97(\mathrm{q}, J=127.8) \\ & 33.1(\mathrm{vbr}) \\ & 71.34(\mathrm{t}, J=145.3) \\ & 105.71(\mathrm{~d}, J=173.5) \\ & 109.39(\mathrm{~d}, J=169.8) \\ & 113.81(\mathrm{~d}, J=169.8) \\ & 114.64 \\ & 119.64(\mathrm{~d}, J=167.5) \\ & 160.32(\mathrm{~m}) \end{aligned}$	SiMe_{3} diene-Me CH_{2} - B $=\mathrm{CH}_{2}$ $m-\mathrm{Ph}$ $p-\mathrm{Ph}$ $2-\mathrm{C}_{5} \mathrm{H}_{3}$ $4,5-\mathrm{C}_{5} \mathrm{H}_{3}$ $o-\mathrm{Ph}$ ipso-Ph
$\begin{aligned} & \mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)- \\ & \left\{\eta^{6}-\mathrm{PhCH} \mathrm{P}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \\ & 7 \mathrm{~b}\left(\mathrm{C}_{7} \mathrm{D}_{8},-200^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -1.69(\mathrm{~d}, J=12,2 \mathrm{H}) \\ & 0.09(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.43(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.51(\mathrm{~d}, J=12,2 \mathrm{H}) \\ & 3.35(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \\ & 4.53(\mathrm{t}, J=6,1 \mathrm{H}) \\ & 4.6(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}) \\ & 5.37(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \\ & 5.55(\mathrm{t}, J=6,2 \mathrm{H}) \\ & 6.15(\mathrm{~d}, J=6,2 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe} \\ & \text { diene- } \mathrm{Me} \\ & =\mathrm{CH}_{2} \text { syn } \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & p-\mathrm{Ph} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & m-\mathrm{Ph} \\ & o-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & -0.31(\mathrm{q}, J=119.7) \\ & 22.03(\mathrm{q}, J=126.5) \\ & 35(\mathrm{vbr} \mathrm{~s}) \\ & 60.07(\mathrm{t}, J=140) \\ & 104.16(\mathrm{~d}, J=175.8) \\ & 114.87(\mathrm{~d}, J=169.8) \\ & 116.78(\mathrm{~d}, J=169) \\ & 119.32(\mathrm{~d}, J=169.8) \\ & 123.1(\mathrm{~d}, J=169.8) \\ & 124.46,126.46(\mathrm{~m}) \\ & 137.18\left(\mathrm{~d}, J_{\mathrm{CF}}=249\right) \\ & 138.68\left(\mathrm{~d}, J_{\mathrm{CF}}=248.3\right) \\ & 148.5\left(\mathrm{~d}, J_{\mathrm{CF}}=238.4\right) \\ & 157.7(\mathrm{~m}) \end{aligned}$	SiMe_{3} diene-Me CH_{2} - B $=\mathrm{CH}_{2}$ p-Ph $4,5-\mathrm{C}_{5} \mathrm{H}_{3}$ $2-\mathrm{C}_{5} \mathrm{H}_{3}$ $o-\mathrm{Ph}$ $m-\mathrm{Ph}$ $=\mathrm{CH}_{2}, 1,3-\mathrm{C}_{5} \mathrm{H}_{3}$ $m-\mathrm{C}_{6} \mathrm{~F}_{5}$ $p-\mathrm{C}_{6} \mathrm{~F}_{5}$ $o-\mathrm{C}_{6} \mathrm{~F}_{5}$ ipso-Ph

Table 1 (Contd.)

Complex	${ }^{1} \mathrm{H}$ NMR (δ)	Assignment	${ }^{13} \mathrm{C}$ NMR (δ)	Assignment
$\begin{aligned} & {\left[\mathrm{Cp}^{\prime \prime \mathrm{Hf}}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)-\right.} \\ & \left.\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)_{n}\right]^{+}\left[\mathrm{PhCH}_{2}^{-}\right. \\ & \left.\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right]_{3}\right]^{-} \\ & \mathbf{8 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -2.38(\mathrm{br} \mathrm{~d}, J=5.5,1 \mathrm{H}) \\ & 0.22,0.25(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 2.23,2.37(\mathrm{~s}, 3 \mathrm{H} \mathrm{each}) \\ & 2.51(\mathrm{br} \mathrm{~d}, J=3.5,1 \mathrm{H}) \text { and } \\ & \text { another underneath diene-Me } \\ & 2.81(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \\ & 3.6(\mathrm{br} \mathrm{~d}, J=5.5,1 \mathrm{H}) \\ & 6.71(\mathrm{~m}, 2 \mathrm{H}) \\ & 6.74(\mathrm{~d}, J=7,2 \mathrm{H}) \\ & 6.88(\mathrm{~m}, 3 \mathrm{H}) \\ & 7.24(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \\ & \mathrm{SiMe}_{3} \\ & \text { diene-Me } \\ & =\mathrm{CH}_{2} \\ & \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & =\mathrm{CH}_{2} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & m-\mathrm{Ph}, p-\mathrm{Ph} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & -0.39,0.31(\mathrm{q}, J=119.8) \\ & 23.78,24.45(\mathrm{q}, J=127.8,128) \\ & 31(\mathrm{vbr} \mathrm{~s}) \\ & 73.37(\mathrm{t}, J=120.7) \\ & 76.29(\mathrm{t}, J=150) \\ & 116.1,133.95,148.85(\mathrm{~m}) \\ & 119(\mathrm{vbr}) \\ & 122.56(\mathrm{~d}, J=158.4) \\ & 126.97(\mathrm{~d}, J=157.7) \\ & 128.7 \\ & 128.83(\mathrm{~d}, J=156.2) \\ & 130.02(\mathrm{~d}, J=171.3) \\ & 136\left(\mathrm{~d}, J_{\mathrm{CF}}=244\right) \\ & 135.9\left(\mathrm{~d}, J_{\mathrm{CF}}=260\right) \\ & 148\left(\mathrm{~d}, J_{\mathrm{CF}}=246\right) \\ & 157.7(\mathrm{~m}) \end{aligned}$	SiMe_{3} diene-Me $\begin{aligned} & \mathrm{CH}_{2}-\mathrm{B} \\ & =\mathrm{CH}_{2} \\ & =\mathrm{CH}_{2} \\ & =\mathrm{CH}_{2}, 1,3-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{13} \\ & o-\mathrm{Ph} \\ & m-\mathrm{Ph} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & m-\mathrm{C}_{5} \mathrm{~F}_{5} \\ & p-\mathrm{C}_{6} \mathrm{~F}_{5} \\ & o-\mathrm{C}_{6} \mathrm{~F}_{5} \\ & \text { ipso- } \mathrm{Ph} \end{aligned}$
$\begin{aligned} & {\left[\mathrm { Cp } ^ { \prime \prime } \mathrm { Hf } \left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-\right.\right.} \\ & 2,3)\left(\mathrm{OEt}_{2}\right)^{+}{ }^{+}\left[\mathrm{PhCH}_{2}-\right. \\ & \left.\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-} \\ & \mathbf{1 2 b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},\right. \\ & \left.-60^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -0.04(\mathrm{~d}, J=12.8,2 \mathrm{H}) \\ & 0.23(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.08(\mathrm{t}, J=7,6 \mathrm{H}) \\ & 2.15(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.71(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \\ & 2.86(\mathrm{~d}, J=12.8,2 \mathrm{H}) \\ & 3.45(\mathrm{q}, J=7,4 \mathrm{H}) \\ & 5.61(\mathrm{t}, J=1.8,1 \mathrm{H}) \\ & 6.76(\mathrm{~d}, J=1.8,2 \mathrm{H}) \\ & 6.64(\mathrm{~d}, J=7.1,2 \mathrm{H}) \\ & 6.88(\mathrm{~m}, 3 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiMe}_{3} \\ & \left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\ & \text { diene-Me } \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & =\mathrm{CH}_{2} \text { syn } \\ & \left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph} \\ & m-\mathrm{Ph}, p-\mathrm{Ph} \end{aligned}$	$\begin{aligned} & -0.85(\mathrm{q}, J=119.7) \\ & 11.9(\mathrm{q}, J=128.3) \\ & 23.22(\mathrm{q}, J=127.7) \\ & 31(\mathrm{vbr} \mathrm{~s}) \\ & 68.44(\mathrm{t}, J=151) \\ & 72.6(\mathrm{t}, J=142.2) \\ & 122.21(\mathrm{~d}, J=159.2) \\ & 122.68(\mathrm{~d}, J=169.8) \\ & 123.42,129.24(\mathrm{~m}) \\ & 126.59(\mathrm{~d}, J=158.5) \\ & 126.7(\mathrm{~d}, J=167.5) \\ & 128.08(\mathrm{~d}, J=156) \\ & 135.9\left(\mathrm{~d}, J_{\mathrm{CF}}=256\right) \\ & 136.9\left(\mathrm{~d}, J_{\mathrm{CF}}=242.2\right) \\ & 147.39\left(\mathrm{~d}, J_{\mathrm{CF}}{ }^{\circ} \mathrm{C}=235.5\right) \\ & 147.91(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{SiMe}_{3} \\ & \left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\ & \text { diene-Me } \\ & \mathrm{CH}_{2}-\mathrm{B} \\ & \left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \\ & =\mathrm{CH}_{2} \\ & p-\mathrm{Ph} \\ & 4,5-\mathrm{C}_{5} \mathrm{H}_{3} \\ & =\mathrm{CH}_{2}, \\ & 1,3-\mathrm{C}_{5} \mathrm{H}_{3} \\ & m-\mathrm{Ph} \\ & 2-\mathrm{C}_{5} \mathrm{H}_{3} \\ & o-\mathrm{Ph}^{2} \\ & m-\mathrm{C}_{6} \mathrm{~F}_{5} \\ & p-\mathrm{C}_{6} \mathrm{~F}_{5} \\ & o-\mathrm{C}_{6} \mathrm{~F}_{5} \\ & i p s o-\mathrm{Ph} \end{aligned}$

Table $2{ }^{19}$ F NMR data of new zirconium and hafnium complexes

Complex	${ }^{19} \mathrm{~F}$ NMR (δ)	Assignment	$\Delta \delta(m-p)$
$\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left\{\eta^{6}-\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}$	-131.3 (d, $J=19.7,6 \mathrm{~F})$	ortho-F	
7a, $\mathrm{C}_{6} \mathrm{D}_{6}\left(20^{\circ} \mathrm{C}\right)$, major isomer	-161.2 (t, $J=21.1,3 \mathrm{~F})$	para-F	
	-165.3 (m, 6F)	meta- F	4.1
$\mathrm{C}_{6} \mathrm{D}_{6}\left(20^{\circ} \mathrm{C}\right)$, minor isomer	-130.8 (d, $J=19.7,6 \mathrm{~F})$	ortho-F	
	-161.52 (t, $J=21.1,3 \mathrm{~F})$	para-F	
	-165.4 (m, 6F)	meta-F	3.9
$\left[\mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left\{\eta^{6}-\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]$	-131.1 (d, $J=19,6 \mathrm{~F})$	ortho-F	
$7 b \mathrm{C}_{7} \mathrm{D}_{8}\left(-20{ }^{\circ} \mathrm{C}\right)$	-161.0 (t, $J=21.1,3 \mathrm{~F})$	para-F	
	-164.9 (m, 6F)	meta- F	3.9
$\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)_{n}\right]\left[\eta^{6}-\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$	-131.9 (d, $J=22.6,6 \mathrm{~F})$	ortho-F	
8b, $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(-40{ }^{\circ} \mathrm{C}\right)$	$-164.4(\mathrm{t}, J=21.1,3 \mathrm{~F})$	para-F	
	$-167.4(\mathrm{~m}, 6 \mathrm{~F})$	meta- F	3.0
$\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]\left[\eta^{6}-\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$	$-132.1(\mathrm{~d}, J=22,6 \mathrm{~F})$	ortho-F	
$\text { 12b, } \mathrm{CD}_{2} \mathrm{Cl}_{2}\left(-60^{\circ} \mathrm{C}\right)$	-164.1 (t, $J=21.1,3 \mathrm{~F})$	para-F	
	-167.2 (m, 6F)	meta-F	3.1

sistent with s-cis coordinated diene ligands with pronounced $\sigma^{2} \pi$ metallacyclopentene character.

The spectroscopic data for the $\mathrm{Zr}-\mathrm{CH}_{2} \mathrm{Ph}$ ligand differ significantly from that of the hafnium analogues. In the case of zirconium, the large ${ }^{1} J_{\mathrm{CH}}$ coupling constant of the $\mathrm{Zr}-\mathrm{CH}_{2}$ moiety (5a: 138.3 Hz ; 6a: 137.8 Hz), the upfield ${ }^{13} \mathrm{C}$ NMR shift of the ipso-C atoms ($\delta 138.5$ and 134.6, respectively), and the high-field ortho-hydrogen resonances of the phenyl groups ($\delta 6.08$ and 6.19 for 5a and 6a, respectively) clearly indicate the presence of an η^{2}-coordinate benzyl ligand. ${ }^{6}$ By contrast, the benzyl ligand in the hafnium compound $\mathbf{5 b}$ is η^{1}-coordinate, with a ${ }^{13} \mathrm{C}$ chemical shift for the ipso-carbon of $\delta 154.2$ and a $\mathrm{CH}_{2}{ }^{1} J_{\mathrm{CH}}$ value of 122.1 Hz . Since the metal centre in $\mathbf{5 a}$ is chiral, the hydrogen atoms of the benzylic CH_{2} group are diastereotopic.

Treatment of toluene solutions of $\mathbf{5 a}$ or $\mathbf{5 b}$ with one equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $-78{ }^{\circ} \mathrm{C}$ leads exclusively to the abstraction
of the benzyl ligand (Scheme 2), in contrast to the selective attack on the diene ligand observed ${ }^{1,4}$ in the case of $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}$ (diene)(allyl) 1. The $\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion thus formed is coordinated to the metal centre via the phenyl group, ${ }^{7}$ as shown by an upfield shift of the m - and p-phenyl resonances (above $\delta 6$), a downfield ${ }^{13} \mathrm{C}$ NMR shift of the ipso-C of $\mathrm{B}-\mathrm{CH}_{2} \mathrm{Ph}(7 \mathbf{a}: \delta 155.9 ; 7 \mathbf{b}: \delta 157.7)$, and a comparatively large ${ }^{19} \mathrm{~F}$ chemical shift difference $\Delta \delta=\delta(m-\mathrm{F})-\delta(p-\mathrm{F})$ of 3.9 ppm , indicative of coordinated pentafluorophenylborate. ${ }^{8}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of 7 a consists of two sets of signals, in a ratio of $c a .60: 40$. The compound evidently exists as a mixture of two isomers which interchange slowly at room temperature in toluene- d_{8} but broaden and coalesce on warming to $60^{\circ} \mathrm{C}$. These results are consistent with an interconversion of the prone and supine coordination modes of the diene ligand ${ }^{9}$ via a 'ring-flipping' process (Scheme 2), similar to the fluxionality processes that have been seen in neutral metallocene diene

Scheme 2 i, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$; ii, solvent toluene or dichloromethane, $-78^{\circ} \mathrm{C}$; iii, toluene; iv, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
complexes. ${ }^{10}$ By contrast, the hafnium complex 7b is not fluxional and exists only as a single isomer.

The reaction of $\mathbf{5 a}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ proceeds in an identical fashion whether toluene or dichloromethane is used as the solvent. However, while $\mathbf{5 b}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ give $\mathbf{7 b}$ in toluene, the reaction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ does not lead to 7 b but gives the ionic product $\mathbf{8 b}$ in which the $\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion is not coordinated. The compound is chiral and shows two ${ }^{1} \mathrm{H}$ NMR resonances for the SiMe_{3} groups. The geminal ${ }^{2} J_{\mathrm{HH}}$ coupling constants of $c a .5 \mathrm{~Hz}$ are smaller than in the zwitterionic $7 \mathbf{b}$, and the $\Delta[\delta$ -$(m-\mathrm{F})-\delta(p-\mathrm{F})]$ value has decreased to 3 ppm (Table 2) Evidently the anion has been displaced by one or more dichloromethane molecules. Unfortunately, in spite of the clean NMR reaction, no solvated product could be crystallised. This facile displacement of a coordinated aryl by the chlorinated solvent is in contrast to the behaviour of the dimethyl complex $\left[\mathrm{Cp}^{\prime \prime} \mathrm{HfMe}_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)\right]\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, which can be recrystallised from dichloromethane without loss of toluene, ${ }^{11}$ and is most probably due to the presence of the electron donating η^{4}-diene ligand in $\mathbf{8 b}$.

The reaction of the isoprene derivative $\mathbf{6 a}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is more complex. Monitoring the reaction by NMR spectroscopy at low temperature gives very complicated spectra which are most probably the result of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ attack on both the diene and the benzyl ligand. Warming this mixture to room temper ature for 16 h leads to complete conversion to the known ${ }^{1}$ boryldiene complex, $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left[\eta^{4}-\mathrm{CH}_{2} \mathrm{CMeCHCHB}\left(\mathrm{C}_{6}-\right.\right.$ $\left.\mathrm{F}_{5}\right)_{2}$] 11a, as well as one equivalent of toluene. This reaction is best explained by assuming an equilibrium between the benzylborate complex 9a and the allylic zwitterion 10a. Compound 10a is capable of undergoing $\mathrm{C}-\mathrm{H}$ activation to give toluene with concomitant migration of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group from boron to zirconium, to generate 11a. A similar reaction sequence has previously been observed in the case of the allyl compounds 2 . ${ }^{1,4}$

The structure of 11a was confirmed by X-ray crystallography (Fig. 1). The 14-electron metal centre is stabilised by coordin-

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left[\mathrm{CH}_{2}{ }^{-}\right.$ $\mathrm{CMeCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$] 11a

$\mathrm{Zr}-\mathrm{C}(1)$	$2.499(1)$	$\mathrm{Zr}-\mathrm{C}(12)$	$2.327(10)$
$\mathrm{Zr}-\mathrm{C}(2)$	$2.505(10)$	$\mathrm{Zr}-\mathrm{C}(13)$	$2.405(10)$
$\mathrm{Zr}-\mathrm{C}(3)$	$2 . .499(10)$	$\mathrm{Zr}-\mathrm{C}(14)$	$2.483(10)$
$\mathrm{Zr}-\mathrm{C}(4)$	$2.483(10)$	$\mathrm{Zr}-\mathrm{C}(15)$	$2.292(9)$
$\mathrm{Zr}-\mathrm{C}(5)$	$2.471(10)$	$\mathrm{Zr}-\mathrm{C}(21)$	$2.342(10)$
$\mathrm{B}(1)-\mathrm{C}(12)$	$1.514(15)$	$\mathrm{Zr}-\mathrm{F}(32)$	$2.441(7)$
$\mathrm{B}(1)-\mathrm{C}(31)$	$1.56(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.435(13)$
$\mathrm{B}(1)-\mathrm{C}(41)$	$1.57(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.365(13)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.423(14)$		
$\mathrm{C}(31)-\mathrm{B}(1)-\mathrm{C}(41)$	$120.4(9)$	$\mathrm{C}(15)-\mathrm{Zr}-\mathrm{C}(21)$	$89.2(4)$
$\mathrm{C}(31)-\mathrm{B}(1)-\mathrm{C}(12)$	$117.5(10)$	$\mathrm{C}(12)-\mathrm{Zr}-\mathrm{C}(21)$	$129.8(4)$
$\mathrm{B}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$125.0(10)$	$\mathrm{C}(12)-\mathrm{Zr}-\mathrm{C}(15)$	$75.3(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$123.7(10)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)$	$119.7(11)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$117.3(10)$		

Fig. 1 Crystal structure of $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CMeCHCHB}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}}\right.$ 11a, showing the atomic numbering scheme; H -atoms are omitted for clarity, ellipsoids are drawn at 40% probability.

Scheme 3 i, $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3},-78$ to $20^{\circ} \mathrm{C}$; ii, room temperature, - toluene.
ation to an ortho-F atom of one of the boryl- $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. ${ }^{12}$ The structure resembles that of the related $\mathrm{C}_{5} \mathrm{Me}_{5}$ complex $\mathrm{Cp} * \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CHCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}$ reported previously; ${ }^{4}$ however, whereas in that case the diene ligand adopted a conformation roughly perpendicular to the Cp * ligand (A), the present complex exists as the supine isomer (B). Selected bond lengths and angles are given in Table 3.

The addition of diethyl ether to a toluene solution of $\mathbf{7 b}$

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cp}{ }^{\prime \prime} \operatorname{Hf}(2,3-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ 12b

$\mathrm{Hf}-\mathrm{O}(1)$	$2.148(2)$	$\mathrm{Hf}-\mathrm{C}(4)$	$2.488(2)$
$\mathrm{Hf}-\mathrm{C}(1)$	$2.491(3)$	$\mathrm{Hf}-\mathrm{C}(5)$	$2.495(2)$
$\mathrm{Hf}-\mathrm{C}(2)$	$2.441(2)$	$\mathrm{Hf}-\mathrm{C}(6)$	$2.199(3)$
$\mathrm{Hf}-\mathrm{C}(3)$	$2.482(2)$	$\mathrm{Hf}-\mathrm{C}(7)$	$2.466(3)$
$\mathrm{Hf}-\mathrm{C}(8)$	$2.473(3)$	$\mathrm{Hf}-\mathrm{C}(9)$	$2.207(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.466(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.377(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.469(4)$		
$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{O}(1)$	$113.86(11)$	$\mathrm{C}(9)-\mathrm{Hf}-\mathrm{O}(1)$	$114.59(10)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.6(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120.7(2)$
$\mathrm{C}(14)-\mathrm{O}(1)-\mathrm{C}(16)$	$116.7(3)$	$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{C}(9)$	$81.38(11)$
$\mathrm{C}(14)-\mathrm{O}(1)-\mathrm{Hf}$	$109.6(2)$	$\mathrm{C}(16)-\mathrm{O}(1)-\mathrm{Hf}$	$133.3(3)$

Fig. 2 Crystal structure of the cation $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]^{+}$in compound 12b, showing the atomic numbering scheme, ellipsoids are drawn at 40% probability.

results in the displacement of the benzylborate anion and the formation of the ionic product $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4}\right)\right.\right.$ $\left.\left(\mathrm{OEt}_{2}\right)\right]^{+}\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-} \mathbf{1 2 b}$ which was isolated as orange crystals [eqn. (2)]. The non-coordinating nature of the anion

is evident from the NMR spectroscopic data. The structure of the complex was confirmed by single-crystal X-ray diffraction (Fig. 2). The ether ligand in 12b is quite tightly bonded, with a Hf-O distance of 2.148(2) \AA, shorter than the bond lengths to the terminal diene carbon atoms. The ether-oxygen atom is trigonal-planar (angle sum 359.6°), with one $\mathrm{Hf}-\mathrm{O}-\mathrm{C}$ angle of $133.3(3)^{\circ}$ being significantly larger than the other [109.6(2) ${ }^{\circ}$. Selected geometric parameters are given in Table 4.

Conclusion

Whereas the 16 -electron allyl complexes $\mathrm{Cp}^{\prime \prime} \mathrm{M}\left(\eta^{4}\right.$-diene)(η^{3}-allyl) $(\mathrm{M}=\mathrm{Zr}$ or Hf$)$ are attacked by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ selectively at the carbon terminus of the diene ligand, the related benzyl complexes $\mathrm{Cp}^{\prime \prime} \mathrm{M}\left(\eta^{4}\right.$-diene) $\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ react with abstraction of the benzyl ligand to give zwitterionic complexes where the anion is coordinated via the benzylic phenyl group. Displacement of the anion is facile and in the case of the hafnium compounds is observed even in dichloromethane, to give solutions of $\left[\mathrm{Cp"} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{n}\right]\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, while the addition of diethyl ether leads to the stable adduct $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$. In the case of the isoprene complex $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(2-\mathrm{MeC}_{4} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ attack by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ can occur both at the diene and the benzyl ligand. Both products are in equilibrium with one another and decompose slowly via $\mathrm{C}-\mathrm{H}$ activation to give a boryldiene complex, $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left[\mathrm{CH}_{2} \mathrm{CMeCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right.$, another example of facile $\mathrm{C}_{6} \mathrm{~F}_{5}$ transfer from boron to zirconium.

Experimental

General procedures

All manipulations were performed under dry nitrogen using Schlenk techniques. Solvents were distilled under nitrogen from sodium (toluene), sodium-benzophenone (diethyl ether), sodium-potassium alloy [light petroleum ($\mathrm{bp}=40-60^{\circ} \mathrm{C}$)] and calcium hydride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Deuteriated solvents were stored over activated 4A molecular sieves and degassed by several freeze-thaw cycles. The compounds $\mathrm{Cp}^{\prime \prime} \mathrm{MCl}\left(\eta^{4}\right.$-diene) (diene $=2,3$-dimethylbuta-1,3-diene or isoprene) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ were prepared following literature procedures. ${ }^{1,13}$ The NMR spectra were recorded using a Bruker DPX300 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra are referenced to the residual solvent protons. ${ }^{19} \mathrm{~F}$ chemical shifts (282.2 MHz) are relative to $\mathrm{CFCl}_{3},{ }^{11} \mathrm{~B}(96.2$ MHz) relative to external $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Preparation of $\mathbf{C p}{ }^{\prime \prime} \mathbf{Z r}\left(\mathbf{2 , 3}-\mathrm{Me}_{2} \mathbf{C}_{4} \mathbf{H}_{4}\right)\left(\mathbf{C H}_{\mathbf{2}} \mathbf{P h}\right) \mathbf{5 a}$

To a suspension of $\mathrm{Cp}^{\prime \prime} \mathrm{ZrCl}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)(1.2 \mathrm{~g}, 2.87 \mathrm{mmol})$ in $30 \mathrm{~cm}^{3}$ of diethyl ether at $-78^{\circ} \mathrm{C}$ was added via syringe 2.9 cm^{3} of a 1.0 M solution of $\mathrm{PhCH}_{2} \mathrm{MgCl}(2.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$. The reaction mixture was allowed to warm to room temperature and stirred for a further 3 h . Removal of the solvent left a dark orange foam which was extracted with light petroleum $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. Evaporation of the filtrate gave $5 \mathbf{5}$ as a dark red solid ($1.15 \mathrm{~g}, 84 \%$) (Calc. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{Si}_{2} \mathrm{Zr}: \mathrm{C}, 60.8 ; \mathrm{H}, 8.1$. Found: C, 59.2; H, 7.6\%).
The following compounds were prepared similarly: $\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{MeC}_{4} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathbf{5 b}$ as a spectroscopically pure orange oil (yield 85%) and $\mathrm{Cp} " \mathrm{Zr}\left(\eta^{4}-\mathrm{CH}_{2} \mathrm{CMeCHCH}_{2}\right)$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 6 \mathrm{a}$ as a dark red solid (yield 80%).

To a solution of $5 \mathbf{5}(1.1 \mathrm{~g}, 2.32 \mathrm{mmol})$ in $40 \mathrm{~cm}^{3}$ toluene at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1.2 \mathrm{~g}, 2.32 \mathrm{mmol})$ in $30 \mathrm{~cm}^{3}$ toluene. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and filtered. The volatiles were removed in vacuo to afford a dark red solid which was washed with light petroleum $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ to give $7 \mathrm{a}(2.0 \mathrm{~g}$, 87%) (Calc. for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{BF}_{15} \mathrm{Si}_{2} \mathrm{Zr}$: C, 51.1; H, 3.9. Found: C, $49.6 ; \mathrm{H}, 3.8 \%) .{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(23{ }^{\circ} \mathrm{C}\right): \delta-11.95$.

Preparation of $\mathbf{C p}^{\prime \prime} \mathbf{H f}\left(\mathbf{2}, \mathbf{3}-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left\{\boldsymbol{\eta}^{\boldsymbol{n}}-\mathrm{PhCH}_{2} \mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathbf{7 b}$

A solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(2.14 \mathrm{~g}, 4.19 \mathrm{mmol})$ in $40 \mathrm{~cm}^{3}$ toluene was added to a solution of $\mathbf{5 b}(2.35 \mathrm{~g}, 4.19 \mathrm{mmol})$ in $20 \mathrm{~cm}^{3}$ toluene. The mixture was stirred for 2 h . Concentration to 20 cm^{3} followed by cooling to $-20^{\circ} \mathrm{C}$ afforded $7 \mathbf{b}$ as orange crystals ($3.81 \mathrm{~g}, 85 \%$) (Calc. for $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{BF}_{15} \mathrm{HfSi}_{2}$: C, $47.0 ; \mathrm{H}, 3.6$. Found: $\mathrm{C}, 46.8 ; \mathrm{H}, 3.6 \%)$. ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(23^{\circ} \mathrm{C}\right): \delta-12.07$.

Table 5 Crystal data for compounds 11a and 12b

	11a	12b
Formula	$\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{BF}_{15} \mathrm{Si}_{2} \mathrm{Zr}$	$\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{BF}_{15} \mathrm{HfOSi}_{2}$
M	879.77	1147.32
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	$P \overline{1}$
$a / A ̊$	10.068(7)	11.191(2)
b/Å	11.44(2)	13.146(2)
clÅ	16.22(2)	17.506(2)
$\alpha /{ }^{\circ}$	96.79(3)	104.763(10)
$\beta /{ }^{\circ}$	105.19(5)	94.315(11)
$\gamma /{ }^{\circ}$	94.15(6)	103.276(10)
U / \AA^{3}	1780(3)	2399.3(5)
Z	2	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.642	1.588
μ / mm^{-1}	0.481	2.317
Reflections collected, unique	5906, 4532	8418, 8418
$R_{\text {int }}{ }^{a}{ }^{\text {a }}$	0.0778	- 020
$R_{1}{ }^{\text {b }}$	0.0734	0.0202
$w R_{2}{ }^{\text {c }}$	0.1720	0.0483
$\begin{aligned} & { }^{a} R_{\text {int }}=\Sigma \mid F_{\mathrm{o}}^{2}-F_{\mathrm{o}}^{2}(\text { mean })\left\|/ \Sigma\left[F_{\mathrm{o}}^{2}\right] . \quad{ }^{b} R_{1}=\Sigma\right\|\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\left\|F_{\mathrm{o}}\right\| . \quad{ }^{c} w R_{2}= \\ & {\left[\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right]^{\frac{1}{2}} .} \end{aligned}$		

Reaction of 6a with $\mathbf{B}\left(\mathrm{C}_{6} \mathbf{F}_{5}\right)_{3}$

To a solution of $\mathbf{6 a}(32 \mathrm{mg}, 0.07 \mathrm{mmol})$ in toluene- $d_{8}\left(0.3 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(35.6 \mathrm{mg}, 0.07 \mathrm{mmol})$ in $0.3 \mathrm{~cm}^{3}$ toluene- d_{8}. After 12 h at room temperature the final product was identified by NMR spectroscopy as a $1: 1$ mixture of $\mathrm{Cp}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{4}-\mathrm{CH}_{2} \mathrm{CMeCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}$ 11a and toluene. From a similar reaction on a larger scale 11a was obtained as red crystals which were suitable for X-ray diffraction.

Reaction of $\mathbf{5 b}$ with $\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ in $\mathrm{CD}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}$

To a solution of $\mathbf{5 b}(0.136 \mathrm{~g}, 0.242 \mathrm{mmol})$ in $0.3 \mathrm{~cm}^{3} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ was added a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(0.124 \mathrm{~g}, 0.242 \mathrm{mmol})$ in $0.3 \mathrm{~cm}^{3} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. A deep red mixture was produced which was characterised by NMR spectroscopy as $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)_{n}\right]^{+}\left[\mathrm{PhCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-} \quad \mathbf{8 b}$. ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(-40{ }^{\circ} \mathrm{C}\right): \delta-12.4$.

Preparation of $\left[\mathbf{C p} \mathbf{~} \mathbf{H f}\left(\mathbf{2}, 3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathbf{H}_{4}\right)\left(\mathrm{OEt}_{2}\right)\right]^{+}\left[\mathrm{PhCH}_{2}-\right.$ $\left.\mathbf{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-12 b}$

To a solution of $\mathbf{7 b}(1.5 \mathrm{~g}, 1.4 \mathrm{mmol})$ in $30 \mathrm{~cm}^{3}$ toluene at $-78{ }^{\circ} \mathrm{C}$ was added $10 \mathrm{~cm}^{3} \mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 10 h , filtered and concentrated to remove excess diethyl ether. An orange oil separated. The toluene supernatant was filtered off and the residue dried in vacuo to afford a dark orange solid ($0.96 \mathrm{~g}, 60 \%$). ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(-30^{\circ} \mathrm{C}\right): \delta-12.5$. Recrystallisation from toluene- $-\mathrm{Et}_{2} \mathrm{O}$ gave crystals suitable for X-ray diffraction (Calc. for $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{BF}_{15} \mathrm{HfOSi}_{2}: \mathrm{C}, 48.9 ; \mathrm{H}, 2.6$. Found: C, 47.8; H, 4.1\%).

X-Ray crystallography

Data for 11a were collected at 293 K on a Delft Instruments FAST TV-area detector diffractometer positioned at the window of a rotating anode generator and following previously described procedures. ${ }^{14}$ Data for $\mathbf{1 2 b}$ were collected at 160 K on a Stoe STADI4 4 -circle diffractometer using the $\omega-\theta$ scanning method. Both data sets were collected using graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$). Full details of
crystal data, data collection and refinement are given in Table 5. Both structures were solved by standard heavy-atom methods using SHELXS86 ${ }^{15}$ and were refined by full-matrix least squares (on F^{2}) using SHELXL93. ${ }^{16}$ All non-hydrogen atoms were refined with anisotropic displacement parameters; hydrogen atoms were constrained to idealised positions using a riding model (with free rotation for methyl groups).

CCDC reference number 186/1406.
See http://www.rsc.org/suppdata/dt/1999/1663/ for crystallographic files in .cif format.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council. G. J. P. thanks the Spanish Ministry for Education and Science for a research fellowship.

References

1 G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, J. Chem. Soc., Dalton Trans., 1997, 3115.

2 G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, J. Chem. Soc., Dalton Trans., 1998, 393.

3 B. Hessen and H. van der Heijden, J. Organomet. Chem., 1997, 534, 237.

4 G. Jiménez Pindado, M. Thornton-Pett, M. Bouwkamp, A Meetsma, B. Hessen and M. Bochmann, Angew. Chem., 1997, 109, 2457; Angew. Chem., Int. Ed. Engl., 1997, 36, 2358.
5 G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, Chem. Commun., 1997, 609.
6 M. Bochmann and S. J. Lancaster, Organometallics, 1993, 12, 633; M. Bochmann, S. J. Lancaster, M. B. Hursthouse and K. M. A. Malik, Organometallics, 1994, 13, 2235 and refs. therein.
7 C. Pellecchia, A. Grassi and A. Immirzi, J. Am. Chem. Soc., 1993, 115, 1160; C. Pellecchia, A. Grassi and A. Zambelli, J. Mol. Catal., 1993, 82, 57; C. Pellecchia, A. Immirzi, A. Grassi and A. Zambelli, Organometallics, 1993, 12, 4473; C. Pellecchia, A. Grassi and A. Zambelli, Organometallics, 1994, 13, 298; A. D. Horton and J. de With, Chem. Commun., 1996, 1375; A. D. Horton and J. de With, Organometallics, 1997, 16, 5424; P. J. Sinnema, K. Liekelema, O. K. B. Staal, B. Hessen and J. H. Teuben, J. Mol. Catal., 1998, 128, 143; M. Bouwkamp, D. van Leusen, A. Meetsma and B. Hessen, Organometallics, 1998, 17, 3645.
8 A. D. Horton, J. de With, A. J. van der Linden and H. van de Weg, Organometallics, 1996, 15, 2672.
9 H. Yamamoto, H. Yasuda, K. Tatsumi, K. Lee, A. Nakamura, J. Chen, Y. Kai and Kasai, Organometallics, 1989, 8, 105.

10 C. Sontag, H. Berke, C. Santer and G. Erker, Helv. Chim. Acta, 1989, 72, 1679; H. Yasuda, Y. Kajahara, K. Mashima, K. Nagasuna, K. Lee and A. Nakamura, Organometallics, 1982, 1, 388.

11 S. J. Lancaster, O. B. Robinson, M. Bochmann, S. J. Coles and M. B. Hursthouse, Organometallics, 1995, 14, 2456.

12 For other examples of F-coordination of $\mathrm{C}_{6} \mathrm{~F}_{5}$ moieties, see A. R. Siedle, R. A. Newmark, W. M. Lamanna and J. C. Huffman, Organometallics, 1993, 12, 1491; B. Temme, G. Erker, J. Karl, H. Luftmann, R. Fröhlich and S. Kotila, Angew. Chem., Int. Ed. Engl., 1995, 34, 1755; J. Karl, G. Erker and Fröhlich, J. Am. Chem. Soc., 1997, 119, 11165; J. Karl, M. Dahlmann, G. Erker and K. Bergander, J. Am. Chem. Soc., 1998, 120, 5643; Y. Sun, R. E. V. H. Spence, W. E. Piers, M. Parvez and G. P. A. Yap, J. Am. Chem. Soc., 1997, 119, 5132.
13 J. L. Pohlmann and F. E. Brinckmann, Z. Naturforsch., Teil B, 1965, 20, 5 .
14 A. Darr, S. R. Drake, M. B. Hursthouse and K. M. A. Malik, Inorg. Chem., 1993, 32, 5704.
15 G. M. Sheldrick, Acta Crystallogr., Sect A, 1990, 46, 467.
16 G. M. Sheldrick, SHELXL93, Program for refinement of crystal structures, University of Göttingen, 1993.

Paper 9/01347D

